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Abstract—In order to find the directions of coherent signals, a 

sparsity enhanced beam-forming method is proposed. Unlike the 

conventional minimum variance distortless response (MVDR) 

method, the minimum variance in the proposed method 

corresponds to the orthogonal relationship between the noise 

subspace and the sparse representation of the received signal 

vector, whereas the distortless response corresponds to the non-

orthogonal relationship between the signal subspace and the 

sparse representation of the received signal vector. The proposed 

sparsity enhanced MVDR (SEMVDR) method is carried out by 

the iterative reweighted Lp-norm constraint minimization. for 

direction finding of coherent signals. Simulation results are 

shown that SEMVDR has better performance than the existing 

algorithms, such as MVDR and MUSIC, when coherent signals 

are present. 

Keywords—distortless response of signal subspace; minimun 

variance of noise subspace; sparse respresentation; direction 

finding; coherent signals 

I.  INTRODUCTION 

Source localization has been of interest in the past few 
decades and played a fundamental role in many applications 
involving electromagnetic, acoustic, biomedical, seismic 
sensing, etc. An important goal for source localization methods 
is to be able to locate coherent signals in the presence of 
multipath propagation [1].  

Many advanced methods for the localization of incoherent 
signals attain super-resolution by exploiting the separability of 
a small number of signals. The most well-known existing 
methods include Capon's method [2], beam-forming [3] and its 
relevant algorithms [4], and subspace based methods such as 
MUSIC [5]. However, most of them could not deal with the 
coherent signals. 

Recently, the usage of sparse feature of signals has evolved 
very rapidly, finding applications in several kinds of signal 
processing problems. There has also been some emerging 
research of these ideas in the context of spatial spectrum 
estimation, beam-forming, and direction finding by antenna 
array [3,4]. Sacchiet al. took advantage of Cauchy-prior to 
introduce sparsity in spectrum estimation and solved the 
resulting nonlinear optimization problem by iterative 
approaches [6]. Jeffs made use of an Lp-norm penalty with 
0 ≤ p ≤ 1 to enforce sparse feature deduced from several 

applications, including sparse antenna array design [7]. 
Gorodnitsky and Rao used a recursive weighted minimum-
norm algorithm called focal under-determined system solver 
(FOCUSS) to make use of sparsity of spatial spectrum in the 
problem of DOA estimation [8]. The work of Fuchs [9] was 
also involved in sparse signal localization under the assumption 
that the number of snapshots is abundant. In [3], In order to 
improve the beam-pattern, a total variation minimisation of the 
whole beam pattern is incorporated to encourage large array 
gains accumulated in the mainlobe and small trivial array gains 
gathered in the side-lobes, while revising the sparse constraint 
only on the sidelobe. 

All these methods are based on the sparse representation of 
the received vector of the array as a sparse linear combination 
of direction vectors. The L1 penalty for sparsity and the L2 
penalty for noise are often ustilized to recover the sparse signal 
representation. To mitigate the effect of measurement noise 
and reduce the calculation, a novel DOA estimation method, 
L1-SVD [10], was proposed, which sparsely represented the 
signal subspace by an overcomplete basis and assumed that 
DOAs of incoming signals are usually very sparse relative to 
the whole spatial domain. It is carried out by L1-norm 
constraint minimization due to it is a convex problem. 
However, L1-norm constraint minimization has a drawback 
that larger coefficients of signal are punished more heavily than 
smaller coefficients, unlike the more impartial punishment of 
the L0-norm constraint minimization [11]. This causes the 
degradation of sparse signal recovery performance based on 
regular L1-norm constraint minimization.  

In this paper, we focus on the problem of direction finding 
for coherent signals. The methodology of the iterative 
reweighted Lp-norm constraint minimization is expanded from 
the array data to signal and noise subspace for direction finding 
of coherent signals. Making use of the orthogonality between 
noise subspace and sparse representation of received signal 
vector, the objective of Lp-norm constrained minimization 
variance distortless response (MVDR) can be achieved. 

This paper is organized as follows. Section 2 briefly 
formulate the problem of direction finding in the sparse signal 
framework. The proposed method is given in Section 3. 
Section 4 presents several simulation results to verify the 
performance of the proposed method. Section 5 provides a 
concluding remark to summarize the paper.
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II. PROBLEM FORMULATION 

Consider a uniform circular array (UCA) that consists of M 
antenna. The radius of the circle is r . Assume that the 

sources ( )
k
s t  come from azimuth 

k
θ  in the far field of the 

array, 1,2, ,k K= ⋯ , K  is the number of sources. The 

received signal vector of UCA is typically expressed as: 

    
1

( ) ( ) ( ) ( )
K

k k

k

t s t tθ
=

= +∑x a v                        (1) 

where ( )tx  is the received signal vector of UCA, t  is 

sampling moments, ( )tv  is the receiver noise vector, ( )
k
θa  is 

direction vector corresponding to azimuth 
k
θ . The m-th 

component of ( )
k
θa  is 

2
2 cos( ( 1) )

( )
c kj f r m

M
m k

e
π

π θ

θ
− −

=a , 1,2, ,m M= ⋯  

When there are coherent signals, i.e., ( ) ( )
k ki i
s t s tα=  for 

constant 
ki

α  and 1 k i K≤ ≠ ≤ , we only have L different and 

incoherent signals where L K< . 

The sample autocorrelation matrix of the received vector 

( , )
k

t θx  is: 

              
1

1
( ) ( )

T
H

t

t t
T =

= ∑R x x                              (2) 

where T  represents the number of received signal vectors of 

UCA, and [ ]
H
complex conjugate transposition. The singular 

value decomposition of the sample autocorrelation matrix is 

            H=R UΛU                                    (3) 

where Λ  is a diagonal matrix whose diagonal elements 

correspond to the singular value of R , U  is matrix whose 

column vectors are singular vectors of R , i.e., 

1 2 3
, , , ,

M
u u u u⋯ , corresponding to the singular values, i.e., 

1 2 3 M
λ λ λ λ≥ > ≥ ≥⋯ .  

According to the subspace decomposition approach, the 
noise subspace of the sample autocorrelation matrix is:  

[ ]1 1n L L M+ +=Q u u u⋯                           (4) 

where L is the number of incoherent signals. The signal 

subspace of sample autocorrelation matrix is: 

The problem is to estimate the azimuth 
k
θ , 1,2, ,k K= ⋯ , 

for all the signals whatever they are coherent or incoherent 
signals.  

III. SPARSITY ENHANCED MVDR 

A. MVDR 
According to the criterion of minimum variance and 

distortless response (MVDR), we have the spatial spectrum:  

mvdr ( ) min
H

nϕ =
w

f w Rw                           (5) 

s.t. ( ) 1H

n
ϕ =a w  

where the weighting vector MC∈w and 
n

ϕ  is the searching 

grid of azimuth, e.g., 0,1,...,359
n

ϕ = degree, 1,2,...,n N=  

and 360N = .  

Because the above problem is a quadratic optimization with 
linear constraint, it is easy to calculate the spatial spectrum in 
the closed-form as given by 

mvdr 1

1
( )

( ) ( )
n H

n n

ϕ
ϕ ϕ−

=f
a R a

                       (6) 

However, it is usually not sparse enough in the spatial 
domain. 

B. SEMVDR 
To take the advantage of sparse property of the spatial 

spectrum, we enhance the criterion of minimum variance and 
distortless response (MVDR) by sparsity constraint. The 
problem of sparsity enhanced MVDR can be described as:  

semvdr 0
argmin n F

β= +
w

f Q Aw w               (7) 

1
s.t. 1H =u Aw  

where 
0

w  is the number of non-zero components of the 

weighting vector NC∈w , 

[ ]1 2
( ) ( ) ( )

N
ϕ ϕ ϕ=A a a a⋯                  (8) 

and 
n

ϕ  is the searching grid of azimuth, e.g., 

0,1,...,359
n

ϕ = degree, 1,2,...,n N=  and 360N = .  

Unfortunately, the above problem of nonlinear optimization 
is an NP-hard problem. A remedy is to use the Lp-norm 
constraint minimization instead and solve it with iterative 
adaptive algorithm. 

semvdr argmin n F F
β= +

w
f Q Aw Gw                (9) 

1
s.t. 1H =u Aw  

where  

( )/ 2 1
diag

p −
=G w                              (10) 

It should be worth noting that 
F p
=Gw w . To avoid the 

drawback that larger coefficients of the weighting vector w   

are punished more heavily than smaller coefficients, unlike the 

more impartial punishment of 
0

w  constraint minimization, 

we often choose 0 0.5p≤ ≤ . 

The optimization problem (9) is non-convex and can be 
rewritten as 

( )2semvdr
argmin H H H

n n
β= +

w
f w A Q Q A G w         (11) 

1
s.t. 1H =u Aw  

However, if we assume that G  is independent with the 

weighting vector w , it is easy to solve the above problem in 

closed-form as 

1

1 1

1 H

H H
=w BA u

u ABA u
                       (12) 
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where 
2 1( )H H

n n
β −= +B A Q Q A G                       (13) 

Therefore, we can summarize the iterative adaptive 
algorithm to solve the problem (11) as the following. 

(Step 1) Initialization: 
mvdr

( )
n n

ϕ=w f ; 

(Step 2) Update: ( )/2 1
diag

p −
=G w  and 

2 1( )H H

n n
β −= +B A Q Q A G  

(Step 3) Update: 1

1 1

1 H

H H
=w BA u

u ABA u
; 

(Step 4) Repeat (Step 2) and (Step 3), until the difference 
between w obtained by the adjacent steps is small enough. 

Finally, the spatial spectrum obtained by the sparsity 
enhanced MVDR is given by 

semvdr
=f w                                 (14) 

Obviously, there are many differences between MVDR and 
SEMVDR. First, the dimension of the weighting vector of 
MVDR is the same as the number of antenna of UCA, whereas 
weighting vector of SEMVDR is the same as the number of the 
searching grid of azimuth. Second, the spatial spectrum of 
MVDR is a quadratic function of the weighting vector, whereas 
the spatial spectrum of SEMVDR is directly the weighting 
vector. Finally, the spatial spectrum of SEMVDR is explicitly 
sparse, whereas MVDR takes no advantage of sparsity of the 
spatial spectrum. 

Because the above SEMVDR algorithm only find the 
sparse solution, there may be some signals that could not be 

found by the peak position of 
semvdr

f . When the directions of 

signals are estimated from the peak position of  
semvdr

f , we 

should modify the signal subspace and noise subspace as 

1 1

⊥=u P u  

and 

n n

⊥=Q P Q  

where ⊥P  is the orthogonal projection matrix of matrix whose 
column vectors are the direction vectors corresponding to the 
the directions of signals estimated from the peak position of  

semvdr
f . Then, we should repeat the above SEMVDR algorithm 

until no significant peak is found in 
semvdr

f . 

IV. SIMULATION RESULT 

We consider a uniform circular array of M = 9 antenna with 
radius r = 40 meters. The wavelength of the narrowband 
signals is 15 meters. Three zero-mean narrowband signals in 
the far-field impinge upon this array from distinct directions of 
arrival (DOA), i.e., 50.3, 78.5 and 112.4 degree. The first and 
third signal are coherent. The total number of snapshots is T = 

64, the signal to noise ratio (SNR) is 9 dB, and 60.1β = . In 

Figs 1 and 2, we compare the spatial spectrum obtained using 

our proposed method with those of MVDR and MUSIC 
methods.  

In Fig.1, we can see that MVDR and MUSIC only detect 
the second signal whose direction vector is orthogonal to the 
noise subspace, and are unable to detect the coherent signals 
whose direction vectors are not orthogonal to the noise 
subspace.  

On the contrary, in Fig.2, we can see that MVDR and 
MUSIC only detect the second signal whose direction vector is 
orthogonal to the noise subspace, and are unable to detect the 
coherent signals whose direction vectors are not orthogonal to 
the noise subspace. 
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Fig. 1. Spatial spectrum of MVDR and MUSIc. 
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Fig. 2. Spatial spectrum of two-step's sparsity enhanced MVDR (SEMVDR-
1 and SEMVDR-2). 

V. CONCLUSION 

The novelty and advantage of our technique is that it is a 
sparsity enhanced MVDR method and is able to find the 
directions of coherent signals. On the one hand, the minimum 
variance in the proposed method corresponds to the orthogonal 
relationship between the noise subspace and the sparse 
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representation of the received signal vector. On the other hand, 
the distortless response corresponds to the non-orthogonal 
relationship between the signal subspace and the sparse 
representation of the received signal vector. Though the 
proposed sparsity enhanced MVDR (SEMVDR) method is 
carried out by the iterative reweighted Lp-norm constraint 
minimization, the number of iteration is usually not more than 
20. Simulation results are shown that the presented algorithm 
has better performance than the existing algorithms, such as 
MVDR and MUSIC, when coherent signals are present. 
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